久久精品国产亚洲a_亚洲综合色网站_国产精品一区三区_日韩亚洲精品在线

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

更新日期:2023-08-30      點擊次數:1961

近日,來自安徽大學的周勝副教授團隊發表了《基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術》論文。

Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.

 

甲烷(CH4)是天然氣的主要成分,在工業生產和日常生活中廣泛用作燃料。此外,甲烷是一種重要的溫室氣體,其濃度對全球氣候產生重要影響。因此,甲烷的測量對環境監測、生物醫藥和能源研究具有重要意義。氣體濃度通常通過各種微量氣體傳感器進行測量,例如氣相色譜儀、半導體氣體傳感器和電化學設備。半導體氣體傳感器在適當的操作環境下具有ppm級別的靈敏度。激光吸收光譜技術具有高選擇性、高靈敏度、快速和多成分監測等優勢,目前廣泛用于各種氣體的檢測。激光吸收光譜技術可以準確測量氣體分子的特征吸收線,并基于可調諧激光有效降低其他氣體光譜線的干擾。此外,它提供了實時原位氣體檢測的可能性,這對于從工業過程到環境變化的各種現象的理解和監測至關重要。氣體分子可以通過其指紋吸收光譜進行有效識別,包括典型的所謂“自展寬"參數和“空氣展寬"參數。光譜線參數是壓力和溫度的函數。濃度測量的準確性取決于壓力穩定性和光譜擬合精度。對于定量光譜分析,傳統上通過準確的模型對光譜進行擬合,同時壓力和溫度必須定期校準,尤其是在相對大的環境波動情況下。因此,為實現所需的準確性,系統的復雜性增加了。

Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement of CH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening" parameters and “air-broadening" parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy.

 

目前,人工智能的快速發展為解決這個問題提供了一種新途徑。人工神經網絡已被用于氣體識別,并在足夠訓練數據的條件下表現出良好性能。基于Hopfield自聯想記憶算法的神經網絡已用于識別五種類似的醇的紅外光譜。反向傳播神經網絡用于從混合氣體中識別目標氣體,證明了卷積神經網絡(CNN)模型可以有效提高識別準確性。此外,最近的研究表明深度神經網絡也可以應用于振動光譜分析。卷積神經網絡和自編碼器網絡被用于處理一維振動光譜數據。與傳統氣體檢測技術相比,輔以深度學習的氣體傳感器可以實現準確的靈敏度測量,并降低異常檢測的魯棒性。深度神經網絡(DNN)可以在經過足夠樣本訓練后直接從吸收光譜中學習特征,實現不需要壓力校準和輪廓擬合的氣體濃度直接識別。這種網絡為檢索氣體濃度提供了一種新途徑,無需昂貴且復雜的壓力控制器。為了展示提出的DNN輔助算法的性能,構建了一個基于DFB激光二極管的甲烷檢測氣體傳感器系統。預測的濃度與校準值相當吻合。這項研究表明,基于DNN的激光吸收光譜在大氣環境監測、呼氣檢測等方面具有顯著潛力。

Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection.

A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achieves the direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption  spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..

 

 

實驗裝置

用于獲取甲烷(CH4)氣體吸收光譜的實驗裝置如圖1所示。一臺近紅外DFB激光二極管,最大峰值輸出功率為20毫瓦,被用作光源。通過控制激光溫度和電流,激光可以在6045 cm-1到6047 cm-1范圍內進行調諧寧波海爾欣光電科技有限公司為此項目提供激光驅動器,型號為QC-1000所選CH4在6046.95 cm-1附近的吸收線在圖2中基于從HITRAN數據庫獲取的光譜線參數進行了模擬。DFB激光二極管經過纖維準直器進行準直,然后由一塊CaF2分束器進行對準,分束后的可見紅光(632.8納米)光束用作跟蹤激光。隨后,光束被送入一個7米有效光程的多程傳輸池,并且池內的壓力由壓力控制器、流量控制器和隔膜泵協同控制。一個典型頻率為100赫茲的三角波被用作掃描信號,以驅動激光二極管。最后,激光通過一個InGaAs光電探測器進行檢測,并被數據采集單元卡獲取。信號隨后傳輸到計算機,并由自制的LabVIEW程序進行分析。

Experimental setup

The experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm?1 to 6047 cm?1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm?1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimated by a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program.

 

QC-1000(1) 

 QC-1000, Healthy photon Co., Ltd.

 

 

Fig. 2. Experimental device diagram. 

Fig. 1. Experimental device diagram.

 

Fig. 3. 

Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm?1 and the cross-section of the selected line obtained from the HITRAN database.

 

 

 

結論

總體而言,本項目開發了基于DNN算法和激光吸收光譜的概念驗證氣體傳感器,并設計了基于DFB激光二極管的甲烷檢測傳感器系統。此外,通過計算RMSE和訓練時間評估了DNN算法的性能,并優化了DNN層、神經元數量和epochs等參數,以獲取最佳參數。提出了改進的系統來分析和預測氣體吸收光譜數據,在甲烷濃度預測方面表現出良好的準確性和穩定性。不同濃度的甲烷預測值與相應的理論值線性擬合,證明其在實際領域應用中具有巨大潛力,尤其適用于惡劣環境。

 

Conclusions

Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.

 

 

References

Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 11207


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

久久精品国产亚洲a_亚洲综合色网站_国产精品一区三区_日韩亚洲精品在线
欧美日韩国产二区| 久久人人97超碰精品888| 欧美日韩精品免费| 亚洲天堂网在线观看| 亚洲天堂av在线免费| 国产精品影院在线观看| 久久久之久亚州精品露出| 玖玖视频精品| 亚洲无限av看| 亚洲欧美日韩成人| 在线精品一区| 一本久道久久综合狠狠爱| 国产乱码精品一区二区三区忘忧草 | 欧美成人在线影院| 亚洲淫性视频| 久久久水蜜桃av免费网站| 亚洲精品欧美一区二区三区| 一区二区三区欧美视频| 国内精品视频久久| 亚洲激情在线激情| 欧美日韩视频在线观看一区二区三区 | 久久国产精品电影| 亚洲免费黄色| 午夜亚洲福利在线老司机| 91久久国产精品91久久性色| 一区二区三区高清| 亚洲国产视频直播| 亚洲自拍偷拍色片视频| 亚洲国产精品悠悠久久琪琪| 一区二区欧美日韩视频| 亚洲国产成人av| 午夜一区二区三视频在线观看| 亚洲国产经典视频| 欧美在线视屏| 午夜精品久久久久久久99热浪潮| 久久亚洲一区二区| 久久久成人精品| 欧美丝袜第一区| 亚洲黄色av| 在线观看欧美日本| 香港久久久电影| 亚洲免费在线精品一区| 欧美福利一区二区| 欧美jizz19hd性欧美| 国产一区二区日韩精品| 亚洲一区二区影院| 亚洲影院在线| 欧美日韩一区二区在线视频 | 欧美激情小视频| 黑人一区二区三区四区五区| 亚洲一二三四久久| 亚洲欧美在线aaa| 国产精品高潮呻吟久久| 日韩一级黄色av| 一本色道久久精品| 欧美日本国产在线| 亚洲精品一二| 免费一级欧美片在线观看| 久久久www| 国产欧美一区二区视频| 亚洲一区在线免费观看| 小辣椒精品导航| 国产农村妇女毛片精品久久莱园子| 亚洲美女中文字幕| 亚洲专区一区| 国产伦精品一区二区三区在线观看 | 亚洲自拍偷拍视频| 欧美在线免费观看亚洲| 国产亚洲激情| 久久精品一区二区国产| 久久一本综合频道| 亚洲国产高清一区| 欧美韩日一区| 日韩一级网站| 久久精品盗摄| 亚洲国产二区| 欧美午夜三级| 午夜欧美精品久久久久久久| 久久久久久久成人| 亚洲国产视频一区| 欧美日韩免费观看中文| 一区二区三区偷拍| 久久精品欧美| 亚洲欧洲在线一区| 国产精品porn| 久久久精品国产一区二区三区 | 狠狠色狠色综合曰曰| 欧美一区二区三区电影在线观看| 久久这里有精品视频| 91久久精品国产91久久性色tv | 欧美午夜在线观看| 欧美一区二区网站| 亚洲欧洲在线视频| 欧美一区高清| 亚洲精品中文字幕有码专区| 国产精品第13页| 久久香蕉精品| 在线亚洲美日韩| 久热精品视频在线| 亚洲婷婷综合色高清在线| 国产亚洲综合性久久久影院| 欧美成ee人免费视频| 亚洲女性裸体视频| 亚洲精品视频免费在线观看| 久久都是精品| 亚洲午夜激情| 亚洲黄色毛片| 国产一区二区三区高清播放| 欧美精品 国产精品| 欧美一区二区三区在| 99国产精品久久久久久久| 久久亚洲综合色一区二区三区| 一区二区免费在线播放| 曰本成人黄色| 国产一区观看| 国产精品婷婷| 欧美日韩国产一区二区三区地区| 久久久国产精彩视频美女艺术照福利| av成人黄色| 亚洲精品在线看| 一区二区三区久久网| 在线精品一区| 黄网站免费久久| 国产乱码精品一区二区三区av| 欧美精品久久99| 牛夜精品久久久久久久99黑人| 香蕉成人久久| 亚洲欧美色一区| 亚洲视频成人| 亚洲一级黄色| 夜夜嗨一区二区| 亚洲精品乱码久久久久久久久| 欧美成人免费观看| 免费欧美视频| 欧美高潮视频| 欧美激情一二三区| 欧美黑人一区二区三区| 欧美激情欧美狂野欧美精品| 欧美成人午夜激情在线| 欧美电影免费观看| 亚洲国产精品成人| 亚洲精品久久久久久下一站| 亚洲清纯自拍| 一区二区三区不卡视频在线观看| 亚洲精品免费看| 日韩午夜一区| 亚洲一级黄色av| 午夜免费在线观看精品视频| 性做久久久久久免费观看欧美| 欧美一区二区三区在线观看| 欧美在线一二三| 久久人人97超碰精品888| 免费观看亚洲视频大全| 欧美日本一道本| 国产精品女同互慰在线看| 国产欧美欧洲在线观看| 黄色工厂这里只有精品| 亚洲国产高清视频| 一区二区三区日韩| 亚洲欧美日韩在线播放| 欧美在线关看| 欧美黑人国产人伦爽爽爽| 日韩亚洲不卡在线| 欧美一区二区日韩| 欧美激情视频一区二区三区在线播放| 欧美日韩精品系列| 国产亚洲欧美色| 亚洲片国产一区一级在线观看| 亚洲视频大全| 麻豆成人91精品二区三区| 亚洲国产人成综合网站| 一本久久知道综合久久| 久久国产精品72免费观看| 欧美激情第4页| 国产亚洲成av人片在线观看桃| 最新中文字幕亚洲| 欧美怡红院视频一区二区三区| 男女视频一区二区| 亚洲专区一二三| 欧美电影在线| 国内精品伊人久久久久av影院| 99在线|亚洲一区二区| 久久久久久电影| 一本不卡影院| 蜜桃久久精品乱码一区二区| 国产女精品视频网站免费| 日韩一二三在线视频播| 久久狠狠亚洲综合| 一区二区三区成人| 欧美成人小视频| 极品少妇一区二区三区| 亚洲欧美一区在线| 亚洲每日更新| 免费成人高清视频| 激情另类综合| 欧美一区二区在线看| 一区二区三区日韩精品| 欧美jjzz| 亚洲激情第一页| 老巨人导航500精品|